

Operators guide for the charybdis IRC server

Contents:

	Scope of this document

	User modes

	Snomask usage

	Meanings of server notice masks

	Channel modes

	User Commands

	Operator Commands

	Oper privileges

	Server config file format

Indices and tables

	Index

	Module Index

	Search Page

Scope of this document

This document describes the commands and functions available to
operators in the charybdis ircd, as used on
AthemeNet [http://www.atheme.net].

This document, and various ideas for features of charybdis, have been
taken from dancer-ircd/hyperion, the ircd used on freenode, mainly
written by Andrew Suffield and Jilles Tjoelker.

While this document may be of some interest to the users of charybdis
servers, it is intended as a reference for network staff.

Charybdis is based on ircd-ratbox 2.1.4, although much has changed.
ircd-ratbox [http://www.ircd-ratbox.org] is commonly used on efnet,
and some other networks.

User modes

+a, server administrator

This vanity usermode is used to denote a server administrator in WHOIS
output. All local “admin” privileges are independent of it, though
services packages may grant extra privileges to +a users.

+D, deaf

Note

This is a user umode, which anybody can set. It is not
specific to operators.

Users with the +D umode set will not receive messages sent to channels.
Joins, parts, topic changes, mode changes, etc are received as normal,
as are private messages.

Support of this umode is indicated by the DEAF token in RPL_ISUPPORT
(005); the parameter indicates the letter of the umode. Note that
several common IRCD implementations have an umode like this (typically
+d) but do not have the token in 005.

+g, Caller ID

Note

This is a user umode, which anybody can set. It is not
specific to operators.

Users with the +g umode set will only receive private messages
from users on a session-defined whitelist, defined by the /accept
command. If a user who is not on the whitelist attempts to send a
private message, the target user will receive a rate-limited notice
saying that the user wishes to speak to them.

Network operators are not affected by the callerid whitelist system in
the event that they need to speak to users who have it enabled.

Support of this umode is indicated by the CALLERID token in
RPL_ISUPPORT (005); the optional parameter indicates the letter of
the umode, otherwise +g.

+i, invisible

Note

This is a user umode, which anybody can set. It is not
specific to operators.

Invisible users do not show up in WHO and NAMES unless you can see them.

+l, receive locops

LOCOPS is a version of OPERWALL that is sent to opers on a single server
only. With cluster{} and shared{} blocks they can optionally be
propagated further.

Unlike OPERWALL, any oper can send and receive LOCOPS.

+o, operator

This indicates global operator status.

+Q, disable forwarding

Note

This is a user umode, which anybody can set. It is not
specific to operators.

This umode prevents you from being affected by channel forwarding. If
enabled on a channel, channel forwarding sends you to another channel if
you could not join. See channel mode +f for more information.

+R, reject messages from unauthenticated users

Note

This is a user umode, which anybody can set. It is not
specific to operators.

If a user has the +R umode set, then any users who are not authenticated
will receive an error message if they attempt to send a private message
or notice to the +R user.

Opers and accepted users (like in +g) are exempt. Unlike +g, the target
user is not notified of failed messages.

+s, receive server notices

This umode allows an oper to receive server notices. The requested types
of server notices are specified as a parameter (“snomask”) to this
umode.

+S, network service

Note

This umode can only be set by servers named in a service{}
block.

This umode grants various features useful for services. For example,
clients with this umode cannot be kicked or deopped on channels, can
send to any channel, do not show channels in WHOIS, can be the target of
services aliases and do not appear in /stats p. No server notices are
sent for hostname changes by services clients; server notices about
kills are sent to snomask +k instead of +s.

The exact effects of this umode are variable; no user or oper on an
actual charybdis server can set it.

+w, receive wallops

Note

This is a user umode, which anybody can set. It is not
specific to operators.

Users with the +w umode set will receive WALLOPS messages sent by opers.
Opers with +w additionally receive WALLOPS sent by servers (e.g. remote
CONNECT, remote SQUIT, various severe misconfigurations, many services
packages).

+z, receive operwall

OPERWALL differs from WALLOPS in that the ability to receive such
messages is restricted. Opers with +z set will receive OPERWALL
messages.

+Z, SSL user

This umode is set on clients connected via SSL/TLS. It cannot be set or
unset after initial connection.

Snomask usage

Usage is as follows:

MODE nick +s +/-flags

To set snomasks.

MODE nick -s

To clear all snomasks.

Umode +s will be set if at least one snomask is set.

Umode +s is oper only by default, but even if you allow nonopers to set
it, they will not get any server notices.

Meanings of server notice masks

+b, bot warnings

Opers with the +b snomask set will receive warning messages from the
server when potential flooders and spambots are detected.

+c, client connections

Opers who have the +c snomask set will receive server notices when
clients attach to the local server.

+C, extended client connection notices

Opers who have the +C snomask set will receive server notices when
clients attach to the local server. Unlike the +c snomask, the
information is displayed in a format intended to be parsed by scripts,
and includes the two unused fields of the USER command.

+d, debug

The +d snomask provides opers extra information which may be of interest
to debuggers. It will also cause the user to receive server notices if
certain assertions fail inside the server. Its precise meaning is
variable. Do not depend on the effects of this snomask as they can and
will change without notice in later revisions.

+f, full warning

Opers with the +f snomask set will receive notices when a user
connection is denied because a connection limit is exceeded (one of the
limits in a class{} block, or the total per-server limit settable with
/quote set max).

+F, far client connection notices

Note

This snomask is only available if the sno_farconnect.so
extension is loaded.

Opers with +F receive server notices when clients connect or disconnect
on other servers. The notices have the same format as those from the +c
snomask, except that the class is ? and the source server of the notice
is the server the user is/was on.

No notices are generated for netsplits and netjoins. Hence, these
notices cannot be used to keep track of all clients on the network.

There is no far equivalent of the +C snomask.

+k, server kill notices

Opers with the +k snomask set will receive server notices when services
kill users and when other servers kill and save (forced nick change to
UID) users. Kills and saves by this server are on +d or +s.

+n, nick change notices

An oper with +n set will receive a server notice every time a local user
changes their nick, giving the old and new nicks. This is mostly useful
for bots that track all users on a single server.

+r, notices on name rejections

Opers with this snomask set will receive a server notice when somebody
tries to use an invalid username, or if a dumb HTTP proxy tries to
connect.

+s, generic server notices

This snomask allows an oper to receive generic server notices. This
includes kills from opers (except services).

+u, unauthorized connections

This snomask allows an oper to see when users try to connect who do not
have an available auth{} block.

+W, whois notifications

Note

This snomask is only available if the sno_whois.so
extension is loaded.

Opers with +W receive notices when a WHOIS is executed on them on their
server (showing idle time).

+x, extra routing notices

Opers who have the +x snomask set will get notices about servers
connecting and disconnecting on the whole network. This includes all
servers connected behind the affected link. This can get rather noisy
but is useful for keeping track of all linked servers.

+y, spy

Opers with +y receive notices when users try to join RESV‘ed (“juped”)
channels. Additionally, if certain extension modules are loaded, they
will receive notices when special commands are used.

+Z, operspy notices

Opers with +Z receive notices whenever an oper anywhere on the network
uses operspy.

This snomask can be configured to be only effective for admins.

Channel modes

+b, channel ban

Bans take one parameter which can take several forms. The most common
form is +b nick!user@host. The wildcards * and ? are
allowed, matching zero-or-more, and exactly-one characters
respectively. The masks will be trimmed to fit the maximum allowable
length for the relevant element. Bans are also checked against the IP
address, even if it resolved or is spoofed. CIDR is supported, like
!@10.0.0.0/8. This is most useful with IPv6. Bans are not
checked against the real hostname behind any kind of spoof, except if
host mangling is in use (e.g. extensions/ip_cloaking.so): if the
user’s host is mangled, their real hostname is checked additionally,
and if a user has no spoof but could enable mangling, the mangled form
of their hostname is checked additionally. Hence, it is not possible
to evade bans by toggling host mangling.

The second form (extban) is +b $type or +b $type:data. type is
a single character (case insensitive) indicating the type of match,
optionally preceded by a tilde (~) to negate the comparison. data
depends on type. Each type is loaded as a module. The available types
(if any) are listed in the EXTBAN token of the 005
(RPL_ISUPPORT) numeric. See doc/extban.txt in the source
distribution for more information.

If no parameter is given, the list of bans is returned. All users can
use this form. The plus sign should also be omitted.

Matching users will not be allowed to join the channel or knock on it.
If they are already on the channel, they may not send to it or change
their nick.

+c, colour filter

This cmode activates the colour filter for the channel. This filters out
bold, underline, reverse video, beeps, mIRC colour codes, and ANSI
escapes. Note that escape sequences will usually leave cruft sent to the
channel, just without the escape characters themselves.

+e, ban exemption

This mode takes one parameter of the same form as bans, which overrides
+b and +q bans for all clients it matches.

This can be useful if it is necessary to ban an entire ISP due to
persistent abuse, but some users from that ISP should still be allowed
in. For example:

/mode #channel +be *!*@*.example.com *!*someuser@host3.example.com

Only channel operators can see +e changes or request the list.

+f, channel forwarding

This mode takes one parameter, the name of a channel (+f
#channel). If the channel also has the +i cmode set, and
somebody attempts to join without either being expliticly invited, or
having an invex (+I), then they will instead join the channel
named in the mode parameter. The client will also be sent a 470
numeric giving the original and target channels.

Users are similarly forwarded if the +j cmode is set and their attempt
to join is throttled, if +l is set and there are already too many users
in the channel or if +r is set and they are not identified.

Forwards may only be set to +F channels, or to channels the setter has
ops in.

Without parameter (/mode #channel f or /mode #channel +f) the forward
channel is returned. This form also works off channel.

+F, allow anybody to forward to this

When this mode is set, anybody may set a forward from a channel they
have ops in to this channel. Otherwise they have to have ops in this
channel.

+g, allow anybody to invite

When this mode is set, anybody may use the INVITE command on the channel
in question. When it is unset, only channel operators may use the INVITE
command.

When this mode is set together with +i, +j, +l or +r, all channel
members can influence who can join.

+i, invite only

When this cmode is set, no client can join the channel unless they have
an invex (+I) or are invited with the INVITE command.

+I, invite exception (invex)

This mode takes one parameter of the same form as bans. Matching clients
do not need to be invited to join the channel when it is invite-only
(+i). Unlike the INVITE command, this does not override +j, +l and +r.

Only channel operators can see +I changes or request the list.

+j, join throttling

This mode takes one parameter of the form n:t, where n and t are
positive integers. Only n users may join in each period of t seconds.

Invited users can join regardless of +j, but are counted as normal.

Due to propagation delays between servers, more users may be able to
join (by racing for the last slot on each server).

+k, key (channel password)

Taking one parameter, when set, this mode requires a user to supply the
key in order to join the channel: /JOIN #channel key.

+l, channel member limit

Takes one numeric parameter, the number of users which are allowed to be
in the channel before further joins are blocked. Invited users may join
regardless.

Due to propagation delays between servers, more users may be able to
join (by racing for the last slot on each server).

+L, large ban list

Channels with this mode will be allowed larger banlists (by default, 500
instead of 50 entries for +b, +q, +e and +I together). Only network
operators with resv privilege may set this mode.

+m, moderated

When a channel is set +m, only users with +o or +v on the channel can
send to it.

Users can still knock on the channel or change their nick.

+n, no external messages

When set, this mode prevents users from sending to the channel without
being in it themselves. This is recommended.

+o, channel operator

This mode takes one parameter, a nick, and grants or removes channel
operator privilege to that user. Channel operators have full control
over the channel, having the ability to set all channel modes except +L
and +P, and kick users. Like voiced users, channel operators can always
send to the channel, overriding +b, +m and +q modes and the per-channel
flood limit. In most clients channel operators are marked with an ‘@’
sign.

The privilege is lost if the user leaves the channel or server in any
way.

Most networks will run channel registration services (e.g. ChanServ)
which ensure the founder (and users designated by the founder) can
always gain channel operator privileges and provide some features to
manage the channel.

+p, paranoid channel

When set, the KNOCK command cannot be used on the channel to request an
invite, and users will not be shown the channel in WHOIS replies unless
they are on it. Unlike in traditional IRC, +p and +s can be set
together.

+P, permanent channel

Channels with this mode (which is accessible only to network operators
with resv privilege) set will not be destroyed when the last user
leaves.

This makes it less likely modes, bans and the topic will be lost and
makes it harder to abuse network splits, but also causes more unwanted
restoring of old modes, bans and topics after long splits.

+q, quiet

This mode behaves exactly like +b (ban), except that the user may still
join the channel. The net effect is that they cannot knock on the
channel, send to the channel or change their nick while on channel.

+Q, block forwarded users

Channels with this mode set are not valid targets for forwarding. Any
attempt to forward to this channel will be ignored, and the user will be
handled as if the attempt was never made (by sending them the relevant
error message).

This does not affect the ability to set +f.

+r, block unidentified

When set, this mode prevents unidentified users from joining. Invited
users can still join.

+s, secret channel

When set, this mode prevents the channel from appearing in the output of
the LIST, WHO and WHOIS command by users who are not on it. Also, the
server will refuse to answer WHO, NAMES, TOPIC and LIST queries from
users not on the channel.

+t, topic limit

When set, this mode prevents users who are not channel operators from
changing the topic.

+v, voice

This mode takes one parameter, a nick, and grants or removes voice
privilege to that user. Voiced users can always send to the channel,
overriding +b, +m and +q modes and the per-channel flood limit. In most
clients voiced users are marked with a plus sign.

The privilege is lost if the user leaves the channel or server in any
way.

+z, reduced moderation

When +z is set, the effects of +m, +b and +q are relaxed. For each
message, if that message would normally be blocked by one of these
modes, it is instead sent to all channel operators. This is intended for
use in moderated debates.

Note that +n is unaffected by this. To silence a given user completely,
remove them from the channel.

User Commands

Standard IRC commands are not listed here. Several of the commands in
the operator commands chapter can also be used by normal users.

ACCEPT

ACCEPT nick, -nick, ...

Adds or removes users from your accept list for umode +g and +R. Users
are automatically removed when they quit, split or change nick.

ACCEPT *

Lists all users on your accept list.

Support of this command is indicated by the CALLERID token in
RPL_ISUPPORT (005); the optional parameter indicates the letter of the
“only allow accept users to send private messages” umode, otherwise +g.
In charybdis this is always +g.

CNOTICE

CNOTICE nick channel :text

Providing you are opped (+o) or voiced (+v) in channel, and nick is a
member of channel, CNOTICE generates a NOTICE towards nick.

CNOTICE bypasses any anti-spam measures in place. If you get “Targets
changing too fast, message dropped”, you should probably use this
command, for example sending a notice to every user joining a certain
channel.

As of charybdis 3.1, NOTICE automatically behaves as CNOTICE if you are
in a channel fulfilling the conditions.

Support of this command is indicated by the CNOTICE token in
RPL_ISUPPORT (005).

CPRIVMSG

CPRIVMSG nick channel :text

Providing you are opped (+o) or voiced (+v) in channel, and nick is a
member of channel, CPRIVMSG generates a PRIVMSG towards nick.

CPRIVMSG bypasses any anti-spam measures in place. If you get “Targets
changing too fast, message dropped”, you should probably use this
command.

As of charybdis 3.1, PRIVMSG automatically behaves as CPRIVMSG if you
are in a channel fulfilling the conditions.

Support of this command is indicated by the CPRIVMSG token in
RPL_ISUPPORT (005).

FINDFORWARDS

FINDFORWARDS channel

Note

This command is only available if the m_findforwards.so
extension is loaded.

Displays which channels forward to the given channel (via cmode +f). If
there are very many channels the list will be truncated.

You must be a channel operator on the channel or an IRC operator to use
this command.

HELP

HELP [topic]

Displays help information. topic can be INDEX, CREDITS, UMODE, CMODE,
SNOMASK or a command name.

There are separate help files for users and opers. Opers can use UHELP
to query the user help files.

IDENTIFY

IDENTIFY parameters...

Note

This command is only available if the m_identify.so
extension is loaded.

Sends an identify command to either NickServ or ChanServ. If the first
parameter starts with #, the command is sent to ChanServ, otherwise to
NickServ. The word IDENTIFY, a space and all parameters are concatenated
and sent as a PRIVMSG to the service. If the service is not online or
does not have umode +S set, no message will be sent.

The exact syntax for this command depends on the services package in
use.

KNOCK

KNOCK channel

Requests an invite to the given channel. The channel must be locked
somehow (+ikl), must not be +p and you may not be banned or quieted.
Also, this command is rate limited.

If successful, all channel operators will receive a 710 numeric. The
recipient field of this numeric is the channel.

Support of this command is indicated by the KNOCK token in RPL_ISUPPORT
(005).

MONITOR

Server side notify list. This list contains nicks. When a user connects,
quits with a listed nick or changes to or from a listed nick, you will
receive a 730 numeric if the nick went online and a 731 numeric if the
nick went offline.

Support of this command is indicated by the MONITOR token in
RPL_ISUPPORT (005); the parameter indicates the maximum number of
nicknames you may have in your monitor list.

You may only use this command once per second.

More details can be found in doc/monitor.txt in the source
distribution.

MONITOR + nick, ...

Adds nicks to your monitor list. You will receive 730 and 731 numerics
for the nicks.

MONITOR - nick, ...

Removes nicks from your monitor list. No output is generated for this
command.

MONITOR C

Clears your monitor list. No output is generated for this command.

MONITOR L

Lists all nicks on your monitor list, using 732 numerics and ending with
a 733 numeric.

MONITOR S

Shows status for all nicks on your monitor list, using 730 and 731
numerics.

Operator Commands

Network management commands

Note

All commands and names are case insensitive. Parameters
consisting of one or more separate letters, such as in MODE,
STATS and WHO, are case sensitive.

CONNECT

CONNECT target [port] [source]

Initiate a connection attempt to server target. If a port is given,
connect to that port on the target, otherwise use the one given in
ircd.conf. If source is given, tell that server to initiate the
connection attempt, otherwise it will be made from the server you are
attached to.

To use the default port with source, specify 0 for port.

SQUIT

SQUIT server [reason]

Closes down the link to server from this side of the network. If a
reason is given, it will be sent out in the server notices on both sides
of the link.

REHASH

REHASH [BANS | DNS | MOTD | OMOTD | TKLINES | TDLINES | TXLINES | TRESVS | REJECTCACHE | HELP] [server]

With no parameter given, ircd.conf will be reread and parsed. The
server argument is a wildcard match of server names.

	BANS

	Rereads kline.conf, dline.conf, xline.conf,
resv.conf and their .perm variants

	DNS

	Reread /etc/resolv.conf.

	MOTD

	Reload the MOTD file

	OMOTD

	Reload the operator MOTD file

	TKLINES

	Clears temporary K:lines.

	TDLINES

	Clears temporary D:lines.

	TXLINES

	Clears temporary X:lines.

	TRESVS

	Clears temporary reservations.

	REJECTCACHE

	Clears the client rejection cache.

	HELP

	Refreshes the help system cache.

RESTART

RESTART server

Cause an immediate total shutdown of the IRC server, and restart from
scratch as if it had just been executed.

This reexecutes the ircd using the compiled-in path, visible as SPATH in
INFO.

Note

This command cannot be used remotely. The server name is
used only as a safety measure.

DIE

DIE server

Immediately terminate the IRC server, after sending notices to all
connected clients and servers

Note

This command cannot be used remotely. The server name is
used only as a safety measure.

SET

SET [ADMINSTRING | AUTOCONN | AUTOCONNALL | FLOODCOUNT | IDENTTIMEOUT | MAX | OPERSTRING | SPAMNUM | SPAMTIME | SPLITMODE | SPLITNUM | SPLITUSERS] value

The SET command sets a runtime-configurable value.

Most of the ircd.conf equivalents have a default_prefix and are
only read on startup. SET is the only way to change these at run time.

Most of the values can be queried by omitting value.

	ADMINSTRING

	Sets string shown in WHOIS for admins. (umodes +o and +a set, umode
+S not set).

	AUTOCONN

	Sets auto-connect on or off for a particular server. Takes two
parameters, server name and new state.

To see these values, use /stats c. Changes to this are lost on a
rehash.

	AUTOCONNALL

	Globally sets auto-connect on or off. If disabled, no automatic
connections are done; if enabled, automatic connections are done
following the rules for them.

	FLOODCOUNT

	The number of lines allowed to be sent to a connection before
throttling it due to flooding. Note that this variable is used for
both channels and clients.

For channels, op or voice overrides this; for users, IRC operator
status or op or voice on a common channel overrides this.

	IDENTTIMEOUT

	Timeout for requesting ident from a client.

	MAX

	Sets the maximum number of connections to value.

This number cannot exceed maxconnections - MAX_BUFFER.
maxconnections is the rlimit for number of open files. MAX_BUFFER
is defined in config.h, normally 60.

MAXCLIENTS is an alias for this.

	OPERSTRING

	Sets string shown in WHOIS for opers (umode +o set, umodes +a and +S
not set).

	SPAMNUM

	Sets how many join/parts to channels constitutes a possible spambot.

	SPAMTIME

	Below this time on a channel counts as a join/part as above.

	SPLITMODE

	Sets splitmode to value:

	ON

	splitmode is permanently on

	OFF

	splitmode is permanently off (default if no_create_on_split
and no_join_on_split are disabled)

	AUTO

	ircd chooses splitmode based on SPLITUSERS and SPLITNUM (default
if no_create_on_split or no_join_on_split are enabled)

	SPLITUSERS

	Sets the minimum amount of users needed to deactivate automatic
splitmode.

	SPLITNUM

	Sets the minimum amount of servers needed to deactivate automatic
splitmode. Only servers that have finished bursting count for this.

User management commands

KILL

KILL nick [reason]

Disconnects the user with the given nick from the server they are
connected to, with the reason given, if present, and broadcast a server
notice announcing this.

Your nick and the reason will appear on channels.

CLOSE

Closes all connections from and to clients and servers who have not
completed registering.

KLINE

KLINE [length] [user@host | user@a.b.c.d] [ON servername] [:reason]

Adds a K:line to kline.conf to ban the given user@host from using
that server.

If the optional parameter length is given, the K:line will be temporary
(i.e. it will not be stored on disk) and last that long in minutes.

If an IP address is given, the ban will be against all hosts matching
that IP regardless of DNS. The IP address can be given as a full address
(192.168.0.1), as a CIDR mask (192.168.0.0/24), or as a glob
(192.168.0.*).

All clients matching the K:line will be disconnected from the server
immediately.

If a reason is specified, it will be sent to the client when they are
disconnected, and whenever a connection is attempted which is banned.

If the ON part is specified, the K:line is set on servers matching the
given mask (provided a matching shared{} block exists there). Otherwise,
if specified in a cluster{} block, the K:Line will be propagated across
the network accordingly.

UNKLINE

UNKLINE user@host [ON servername]

Will attempt to remove a K:line matching user@host from kline.conf,
and will flush a temporary K:line.

XLINE

XLINE [length] mask [ON servername] [:reason]

Works similarly to KLINE, but matches against the real name field. The
wildcards are * (any sequence), ? (any character), # (a digit) and @ (a
letter); wildcard characters can be escaped with a backslash. The
sequence \s matches a space.

All clients matching the X:line will be disconnected from the server
immediately.

The reason is never sent to users. Instead, they will be exited with
“Bad user info”.

If the ON part is specified, the X:line is set on servers matching the
given mask (provided a matching shared{} block exists there). Otherwise,
if specified in a cluster{} block, the X:line will be propagated across
the network accordingly.

UNXLINE

UNXLINE mask [ON servername]

Will attempt to remove an X:line from xline.conf, and will flush a
temporary X:line.

RESV

RESV [length] [channel | mask] [ON servername] [:reason]

If used on a channel, “jupes” the channel locally. Joins to the channel
will be disallowed and generate a server notice on +y, and users will
not be able to send to the channel. Channel jupes cannot contain
wildcards.

If used on a nickname mask, prevents local users from using a nick
matching the mask (the same wildcard characters as xlines). There is no
way to exempt the initial nick from this.

In neither case will current users of the nick or channel be kicked or
disconnected.

This facility is not designed to make certain nicks or channels
oper-only.

The reason is never sent to users.

If the ON part is specified, the resv is set on servers matching the
given mask (provided a matching shared{} block exists there). Otherwise,
if specified in a cluster{} block, the resv will be propagated across
the network accordingly.

UNRESV

UNRESV [channel | mask] [ON servername]

Will attempt to remove a resv from resv.conf, and will flush a
temporary resv.

DLINE

DLINE [length] a.b.c.d [ON servername] [:reason]

Adds a D:line to dline.conf, which will deny any connections from
the given IP address. The IP address can be given as a full address
(192.168.0.1) or as a CIDR mask (192.168.0.0/24).

If the optional parameter length is given, the D:line will be temporary
(i.e. it will not be stored on disk) and last that long in minutes.

All clients matching the D:line will be disconnected from the server
immediately.

If a reason is specified, it will be sent to the client when they are
disconnected, and, if dline_reason is enabled, whenever a connection is
attempted which is banned.

D:lines are less load on a server, and may be more appropriate if
somebody is flooding connections.

If the ON part is specified, the D:line is set on servers matching the
given mask (provided a matching shared{} block exists there, which is
not the case by default). Otherwise, the D:Line will be set on the local
server only.

Only exempt{} blocks exempt from D:lines. Being a server or having
kline_exempt in auth{} does not exempt (different from K/G/X:lines).

UNDLINE

UNDLINE a.b.c.d [ON servername]

Will attempt to remove a D:line from dline.conf, and will flush a
temporary D:line.

TESTGECOS

TESTGECOS gecos

Looks up X:Lines matching the given gecos.

TESTLINE

TESTLINE [nick!] [user@host | a.b.c.d]

Looks up the given hostmask or IP address and reports back on any auth{}
blocks, D: or K: lines found. If nick is given, also searches for nick
resvs.

For temporary items the number of minutes until the item expires is
shown (as opposed to the hit count in STATS q/Q/x/X).

This command will not perform DNS lookups; for best results you must
testline a host and its IP form.

The given username should begin with a tilde (~) if identd is not in
use. As of charybdis 2.1.1, no_tilde and username truncation will be
taken into account like in the normal client access check.

As of charybdis 2.2.0, a channel name can be specified and the RESV will
be returned, if there is one.

TESTMASK

TESTMASK hostmask [gecos]

Searches the network for users that match the hostmask and gecos given,
returning the number of matching users on this server and other servers.

The hostmask is of the form user@host or user@ip/cidr with * and ?
wildcards, optionally preceded by nick!.

The gecos field accepts the same wildcards as xlines.

The IP address checked against is 255.255.255.255 if the IP address is
unknown (remote client on a TS5 server) or 0 if the IP address is hidden
(auth{} spoof).

LUSERS

LUSERS [mask] [nick | server]

Shows various user and channel counts.

The mask parameter is obsolete but must be used when querying a remote
server.

TRACE

TRACE [server | nick] [location]

With no argument or one argument which is the current server, TRACE
gives a list of all connections to the current server and a summary of
connection classes.

With one argument which is another server, TRACE displays the path to
the specified server, and all servers, opers and -i users on that
server, along with a summary of connection classes.

With one argument which is a client, TRACE displays the path to that
client, and that client’s information.

If location is given, the command is executed on that server; no path is
displayed.

When listing connections, type, name and class is shown in addition to
information depending on the type:

	Try.

	A server we are trying to make a TCP connection to.

	H.S.

	A server we have established a TCP connection to, but is not yet
registered.

	????

	An incoming connection that has not yet registered as a user or a
server (“unknown”). Shows the username, hostname, IP address and the
time the connection has been open. It is possible that the ident or
DNS lookups have not completed yet, and in any case no tildes are
shown here. Unknown connections may not have a name yet.

	User

	A registered unopered user. Shows the username, hostname, IP
address, the time the client has not sent anything (as in STATS l)
and the time the user has been idle (from PRIVMSG only, as in
WHOIS).

	Oper

	Like User, but opered.

	Serv

	A registered server. Shows the number of servers and users reached
via this link, who made this connection and the time the server has
not sent anything.

ETRACE

ETRACE [nick]

Shows client information about the given target, or about all local
clients if no target is specified.

PRIVS

PRIVS [nick]

Displays effective operator privileges for the specified nick, or for
yourself if no nick is given. This includes all privileges from the
operator block, the name of the operator block and those privileges from
the auth block that have an effect after the initial connection.

The exact output depends on the server the nick is on, see the matching
version of this document. If the remote server does not support this
extension, you will not receive a reply.

MASKTRACE

MASKTRACE hostmask [gecos]

Searches the local server or network for users that match the hostmask
and gecos given. Network searches require the oper_spy privilege and an
‘!’ before the hostmask. The matching works the same way as TESTMASK.

The hostmask is of the form user@host or user@ip/cidr with * and ?
wildcards, optionally preceded by nick!.

The gecos field accepts the same wildcards as xlines.

The IP address field contains 255.255.255.255 if the IP address is
unknown (remote client on a TS5 server) or 0 if the IP address is hidden
(auth{} spoof).

CHANTRACE

CHANTRACE channel

Displays information about users in a channel. Opers with the oper_spy
privilege can get the information without being on the channel, by
prefixing the channel name with an !.

The IP address field contains 255.255.255.255 if the IP address is
unknown (remote client on a TS5 server) or 0 if the IP address is hidden
(auth{} spoof).

SCAN

SCAN UMODES +modes-modes [no-list] [list] [global] [list-max number] [mask nick!user@host]

Searches the local server or network for users that have the umodes
given with + and do not have the umodes given with -. no-list disables
the listing of matching users and only shows the count. list enables the
listing (default). global extends the search to the entire network
instead of local users only. list-max limits the listing of matching
users to the given amount. mask causes only users matching the given
nick!user@host mask to be selected. Only the displayed host is
considered, not the IP address or real host behind dynamic spoofs.

The IP address field contains 255.255.255.255 if the IP address is
unknown (remote client on a TS5 server) or 0 if the IP address is hidden
(auth{} spoof).

Network searches where a listing is given are operspy commands.

CHGHOST

CHGHOST nick value

Set the hostname associated with a particular nick for the duration of
this session. This command is disabled by default because of the abuse
potential and little practical use.

Miscellaneous commands

ADMIN

ADMIN [nick | server]

Shows the information in the admin{} block.

INFO

INFO [nick | server]

Shows information about the authors of the IRC server, and some
information about this server instance. Opers also get a list of
configuration options.

TIME

TIME [nick | server]

Shows the local time on the given server, in a human-readable format.

VERSION

VERSION [nick | server]

Shows version information, a few compile/config options, the SID and the
005 numerics. The 005 numeric will be remapped to 105 for remote
requests.

STATS

STATS [type] [nick | server]

Display various statistics and configuration information.

	A

	Show DNS servers

	b

	Show active nick delays

	B

	Show hash statistics

	c

	Show connect blocks

	d

	Show temporary D:lines

	D

	Show permanent D:lines

	e

	Show exempt blocks (exceptions to D:lines)

	E

	Show events

	f

	Show file descriptors

	h

	Show hub_mask/leaf_mask

	i

	Show auth blocks, or matched auth blocks

	k

	Show temporary K:lines, or matched K:lines

	K

	Show permanent K:lines, or matched K:lines

	l

	Show hostname and link information about the given nick. With a
server name, show information about opers and servers on that
server; opers get information about all local connections if they
query their own server. No hostname is shown for server connections.

	L

	Like l, but show IP address instead of hostname

	m

	Show commands and their usage statistics (total counts, total bytes,
counts from server connections)

	n

	Show blacklist blocks (DNS blacklists) with hit counts since last
rehash and (parenthesized) reference counts. The reference count
shows how many clients are waiting on a lookup of this blacklist or
have been found and are waiting on registration to complete.

	o

	Show operator blocks

	O

	Show privset blocks

	p

	Show logged on network operators which are not set AWAY.

	P

	Show listen blocks (ports)

	q

	Show temporarily resv’ed nicks and channels with hit counts

	Q

	Show permanently resv’ed nicks and channels with hit counts since
last rehash bans

	r

	Show resource usage by the ircd

	t

	Show generic server statistics about local connections

	u

	Show server uptime

	U

	Show shared (c), cluster (C) and service (s) blocks

	v

	Show connected servers and brief status

	x

	Show temporary X:lines with hit counts

	X

	Show permanent X:lines with hit counts since last rehash bans

	y

	Show class blocks

	z

	Show memory usage statistics

	Z

	Show ziplinks statistics

	?

	Show connected servers and link information about them

WALLOPS

WALLOPS :message

Sends a WALLOPS message to all users who have the +w umode set. This is
for things you don’t mind the whole network knowing about.

OPERWALL

OPERWALL :message

Sends an OPERWALL message to all opers who have the +z umode set. +z is
restricted, OPERWALL should be considered private communications.

Oper privileges

These are specified in privset{}.

oper:admin, server administrator

Various privileges intended for server administrators. Among other
things, this automatically sets umode +a and allows loading modules.

oper:die, die and restart

This grants permission to use DIE and RESTART, shutting down or
restarting the server.

oper:global_kill, global kill

Allows using KILL on users on any server.

oper:hidden, hide from /stats p

This privilege currently does nothing, but was designed to hide bots
from /stats p so users will not message them for help.

oper:hidden_admin, hidden administrator

This grants everything granted to the oper:admin privilege, except the
ability to set umode +a. If both oper:admin and oper:hidden_admin are
possessed, umode +a can still not be used.

oper:kline, kline and dline

Allows using KLINE and DLINE, to ban users by user@host mask or IP
address.

oper:local_kill, kill local users

This grants permission to use KILL on users on the same server,
disconnecting them from the network.

oper:mass_notice, global notices and wallops

Allows using server name ($$mask) and hostname ($#mask) masks in NOTICE
and PRIVMSG to send a message to all matching users, and allows using
the WALLOPS command to send a message to all users with umode +w set.

oper:operwall, send/receive operwall

Allows using the OPERWALL command and umode +z to send and receive
operwalls.

oper:rehash, rehash

Allows using the REHASH command, to rehash various configuration files
or clear certain lists.

oper:remoteban, set remote bans

This grants the ability to use the ON argument on DLINE/KLINE/XLINE/RESV
and UNDLINE/UNKLINE/UNXLINE/UNRESV to set and unset bans on other
servers, and the server argument on REHASH. This is only allowed if the
oper may perform the action locally, and if the remote server has a
shared{} block.

Note

If a cluster{} block is present, bans are sent remotely even
if the oper does not have oper:remoteban privilege.

oper:resv, channel control

This allows using /resv, /unresv and changing the channel modes +L and
+P.

oper:routing, remote routing

This allows using the third argument of the CONNECT command, to instruct
another server to connect somewhere, and using SQUIT with an argument
that is not locally connected. (In both cases all opers with +w set will
be notified.)

oper:spy, use operspy

This allows using /mode !#channel, /whois !nick, /who !#channel,
/chantrace !#channel, /topic !#channel, /who !mask, /masktrace
!user@host :gecos and /scan umodes +modes-modes global list to see
through secret channels, invisible users, etc.

All operspy usage is broadcasted to opers with snomask +Z set (on the
entire network) and optionally logged. If you grant this to anyone, it
is a good idea to establish concrete policies describing what it is to
be used for, and what not.

If operspy_dont_care_user_info is enabled, /who mask is operspy
also, and /who !mask, /who mask, /masktrace !user@host :gecos and /scan
umodes +modes-modes global list do not generate +Z notices or logs.

oper:unkline, unkline and undline

Allows using UNKLINE and UNDLINE.

oper:xline, xline and unxline

Allows using XLINE and UNXLINE, to ban/unban users by realname.

snomask:nick_changes, see nick changes

Allows using snomask +n to see local client nick changes. This is
designed for monitor bots.

Server config file format

General format

The config file consists of a series of BIND-style blocks. Each block
consists of a series of values inside it which pertain to configuration
settings that apply to the given block.

Several values take lists of values and have defaults preset inside
them. Prefix a keyword with a tilde (~) to override the default and
disable it.

A line may also be a .include directive, which is of the form:

.include "file"

and causes file to be read in at that point, before the rest of
the current file is processed. Relative paths are first tried relative
to PREFIX and then relative to ETCPATH (normally PREFIX/etc).

Anything from a # to the end of a line is a comment. Blank lines are
ignored. C-style comments are also supported.

Specific blocks and directives

Not all configuration blocks and directives are listed here, only the
most common ones. More blocks and directives will be documented in later
revisions of this manual.

loadmodule directive

loadmodule "text";

Loads a module into the IRCd. In charybdis 1.1, most modules are
automatically loaded in. In future versions, it is intended to remove
this behaviour as to allow for easy customization of the IRCd’s
featureset.

serverinfo {} block

serverinfo {
 name = "text";
 sid = "text";
 description = "text";
 network_name = "text";
 network_desc = "text";
 hub = boolean;
 vhost = "text";
 vhost6 = "text";
};

The serverinfo {} block defines the core operational parameters of the
IRC server.

serverinfo {} variables

	name

	The name of the IRC server that you are configuring. This must
contain at least one dot. It is not necessarily equal to any DNS
name. This must be unique on the IRC network.

	sid

	A unique ID which describes the server. This consists of one digit
and two characters which can be digits or letters.

	description

	A user-defined field of text which describes the IRC server. This
information is used in /links and /whois requests. Geographical
location information could be a useful use of this field, but most
administrators put a witty saying inside it instead.

	network_name

	The name of the IRC network that this server will be a member of.
This is used in the welcome message and NETWORK= in 005.

	hub

	A boolean which defines whether or not this IRC server will be
serving as a hub, i.e. have multiple servers connected to it.

	vhost

	An optional text field which defines an IP from which to connect
outward to other IRC servers.

	vhost6

	An optional text field which defines an IPv6 IP from which to
connect outward to other IRC servers.

admin {} block

admin {
 name = "text";
 description = "text";
 email = "text";
};

This block provides the information which is returned by the ADMIN
command.

	name

	The name of the administrator running this service.

	description

	The description of the administrator’s position in the network.

	email

	A point of contact for the administrator, usually an e-mail address.

class {} block

class "name" {
 ping_time = duration;
 number_per_ident = number;
 number_per_ip = number;
 number_per_ip_global = number;
 cidr_ipv4_bitlen = number;
 cidr_ipv6_bitlen = number;
 number_per_cidr = number;
 max_number = number;
 sendq = size;
};

class "name" {
 ping_time = duration;
 connectfreq = duration;
 max_number = number;
 sendq = size;
};

Class blocks define classes of connections for later use. The class name
is used to connect them to other blocks in the config file (auth{} and
connect{}). They must be defined before they are used.

Classes are used both for client and server connections, but most
variables are different.

class {} variables: client classes

	ping_time

	The amount of time between checking pings for clients, e.g.: 2
minutes

	number_per_ident

	The amount of clients which may be connected from a single identd
username on a per-IP basis, globally. Unidented clients all count as
the same username.

	number_per_ip

	The amount of clients which may be connected from a single IP
address.

	number_per_ip_global

	The amount of clients which may be connected globally from a single
IP address.

	cidr_ipv4_bitlen

	The netblock length to use with CIDR-based client limiting for IPv4
users in this class (between 0 and 32).

	cidr_ipv6_bitlen

	The netblock length to use with CIDR-based client limiting for IPv6
users in this class (between 0 and 128).

	number_per_cidr

	The amount of clients which may be connected from a single netblock.

If this needs to differ between IPv4 and IPv6, make different
classes for IPv4 and IPv6 users.

	max_number

	The maximum amount of clients which may use this class at any given
time.

	sendq

	The maximum size of the queue of data to be sent to a client before
it is dropped.

class {} variables: server classes

	ping_time

	The amount of time between checking pings for servers, e.g.: 2
minutes

	connectfreq

	The amount of time between autoconnects. This must at least be one
minute, as autoconnects are evaluated with that granularity.

	max_number

	The amount of servers to autoconnect to in this class. More
precisely, no autoconnects are done if the number of servers in this
class is greater than or equal max_number

	sendq

	The maximum size of the queue of data to be sent to a server before
it is dropped.

auth {} block

auth {
 user = "hostmask";
 password = "text";
 spoof = "text";
 flags = list;
 class = "text";
};

auth {} blocks allow client connections to the server, and set various
properties concerning those connections.

Auth blocks are evaluated from top to bottom in priority, so put special
blocks first.

auth {} variables

	user

	A hostmask (user@host) that the auth {} block applies to. It is
matched against the hostname and IP address (using :: shortening for
IPv6 and prepending a 0 if it starts with a colon) and can also use
CIDR masks. You can have multiple user entries.

	password

	An optional password to use for authenticating into this auth{}
block. If the password is wrong the user will not be able to connect
(will not fall back on another auth{} block).

	spoof

	An optional fake hostname (or user@host) to apply to users
authenticated to this auth{} block. In STATS i and TESTLINE, an
equals sign (=) appears before the user@host and the spoof is shown.

	flags

	A list of flags to apply to this auth{} block. They are listed
below. Some of the flags appear as a special character,
parenthesized in the list, before the user@host in STATS i and
TESTLINE.

	class

	A name of a class to put users matching this auth{} block into.

auth {} flags

	encrypted

	The password used has been encrypted.

	spoof_notice

	Causes the IRCd to send out a server notice when activating a spoof
provided by this auth{} block.

	exceed_limit (>)

	Users in this auth{} block can exceed class-wide limitations.

	dnsbl_exempt ($)

	Users in this auth{} block are exempted from DNS blacklist checks.
However, they will still be warned if they are listed.

	kline_exempt (^)

	Users in this auth{} block are exempted from DNS blacklists, k:lines
and x:lines.

	spambot_exempt

	Users in this auth{} block are exempted from spambot checks.

	shide_exempt

	Users in this auth{} block are exempted from some serverhiding
effects.

	jupe_exempt

	Users in this auth{} block do not trigger an alarm when joining
juped channels.

	resv_exempt

	Users in this auth{} block may use reserved nicknames and channels.

Note

The initial nickname may still not be reserved.

	flood_exempt (|) Users in this auth{} block may send arbitrary

	amounts of commands per time unit to the server. This does not
exempt them from any other flood limits. You should use this
setting with caution.

	no_tilde (-)

	Users in this auth{} block will not have a tilde added to their
username if they do not run identd.

	need_ident (+)

	Users in this auth{} block must have identd, otherwise they will be
rejected.

	need_ssl

	Users in this auth{} block must be connected via SSL/TLS, otherwise
they will be rejected.

	need_sasl

	Users in this auth{} block must identify via SASL, otherwise they
will be rejected.

exempt {} block

exempt {
 ip = "ip";
};

An exempt block specifies IP addresses which are exempt from D:lines and
throttling. Multiple addresses can be specified in one block. Clients
coming from these addresses can still be K/G/X:lined or banned by a DNS
blacklist unless they also have appropriate flags in their auth{} block.

exempt {} variables

	ip

	The IP address or CIDR range to exempt.

privset {} block

privset {
 extends = "name";
 privs = list;
};

A privset (privilege set) block specifies a set of operator privileges.

privset {} variables

	extends

	An optional privset to inherit. The new privset will have all
privileges that the given privset has.

	privs

	Privileges to grant to this privset. These are described in the
operator privileges section.

operator {} block

operator "name" {
 user = "hostmask";
 password = "text";
 rsa_public_key_file = "text";
 umodes = list;
 snomask = "text";
 flags = list;
};

Operator blocks define who may use the OPER command to gain extended
privileges.

operator {} variables

	user

	A hostmask that users trying to use this operator {} block must
match. This is checked against the original host and IP address;
CIDR is also supported. So auth {} spoofs work in operator {}
blocks; the real host behind them is not checked. Other kind of
spoofs do not work in operator {} blocks; the real host behind them
is checked.

Note that this is different from charybdis 1.x where all kinds of
spoofs worked in operator {} blocks.

	password

	A password used with the OPER command to use this operator {} block.
Passwords are encrypted by default, but may be unencrypted if
~encrypted is present in the flags list.

	rsa_public_key_file

	An optional path to a RSA public key file associated with the
operator {} block. This information is used by the CHALLENGE
command, which is an alternative authentication scheme to the
traditional OPER command.

	umodes

	A list of usermodes to apply to successfully opered clients.

	snomask

	An snomask to apply to successfully opered clients.

	privset

	The privilege set granted to successfully opered clients. This must
be defined before this operator{} block.

	flags

	A list of flags to apply to this operator{} block. They are listed
below.

operator {} flags

	encrypted

	The password used has been encrypted. This is enabled by default,
use ~encrypted to disable it.

	need_ssl

	Restricts use of this operator{} block to SSL/TLS connections only.

connect {} block

connect "name" {
 host = "text";
 send_password = "text";
 accept_password = "text";
 port = number;
 hub_mask = "mask";
 leaf_mask = "mask";
 class = "text";
 flags = list;
 aftype = protocol;
};

Connect blocks define what servers may connect or be connected to.

connect {} variables

	host

	The hostname or IP to connect to.

Note

	Furthermore, if a hostname is used, it must have an

	A or AAAA record (no CNAME) and it must be
the primary hostname for inbound connections to work.

IPv6 addresses must be in :: shortened form; addresses which
then start with a colon must be prepended with a zero, for
example 0::1.

	send_password

	The password to send to the other server.

	accept_password

	The password that should be accepted from the other server.

	port

	The port on the other server to connect to.

	hub_mask

	An optional domain mask of servers allowed to be introduced by this
link. Usually, “*” is fine. Multiple hub_masks may be specified,
and any of them may be introduced. Violation of hub_mask and
leaf_mask restrictions will cause the local link to be closed.

	leaf_mask

	An optional domain mask of servers not allowed to be introduced by
this link. Multiple leaf_masks may be specified, and none of them
may be introduced. leaf_mask has priority over hub_mask.

	class

	The name of the class this server should be placed into.

	flags

	A list of flags concerning the connect block. They are listed below.

	aftype

	The protocol that should be used to connect with, either ipv4 or
ipv6. This defaults to ipv4 unless host is a numeric IPv6 address.

connect {} flags

	encrypted

	The value for accept_password has been encrypted.

	autoconn

	The server should automatically try to connect to the server defined
in this connect {} block if it’s not connected already and
max_number in the class is not reached yet.

	compressed

	Ziplinks should be used with this server connection. This compresses
traffic using zlib, saving some bandwidth and speeding up netbursts.

If you have trouble setting up a link, you should turn this off as
it often hides error messages.

	topicburst

	Topics should be bursted to this server.

This is enabled by default.

listen {} block

listen {
 host = "text";
 port = number;
};

A listen block specifies what ports a server should listen on.

listen {} variables

	host

	An optional host to bind to. Otherwise, the ircd will listen on all
available hosts.

	port

	A port to listen on. You can specify multiple ports via commas, and
define a range by seperating the start and end ports with two dots
(..).

modules {} block

modules {
 path = "text";
 module = text;
};

The modules block specifies information for loadable modules.

modules {} variables

	path

	Specifies a path to search for loadable modules.

	module

	Specifies a module to load, similar to loadmodule.

general {} block

modules {
 values
};

The general block specifies a variety of options, many of which were in
config.h in older daemons. The options are documented in
reference.conf.

channel {} block

modules {
 values
};

The channel block specifies a variety of channel-related options, many
of which were in config.h in older daemons. The options are
documented in reference.conf.

serverhide {} block

modules {
 values
};

The serverhide block specifies options related to server hiding. The
options are documented in reference.conf.

blacklist {} block

blacklist {
 host = "text";
 reject_reason = "text";
};

The blacklist block specifies DNS blacklists to check. Listed clients
will not be allowed to connect. IPv6 clients are not checked against
these.

Multiple blacklists can be specified, in pairs with first host then
reject_reason.

blacklist {} variables

	host

	The DNSBL to use.

	reject_reason

	The reason to send to listed clients when disconnecting them.

alias {} block

alias "name" {
 target = "text";
};

Alias blocks allow the definition of custom commands. These commands
send PRIVMSG to the given target. A real command takes precedence above
an alias.

alias {} variables

	target

	The target nick (must be a network service (umode +S)) or
user@server. In the latter case, the server cannot be this server,
only opers can use user starting with “opers” reliably and the user
is interpreted on the target server only so you may need to use
nick@server instead).

cluster {} block

cluster {
 name = "text";
 flags = list;
};

The cluster block specifies servers we propagate things to
automatically. This does not allow them to set bans, you need a separate
shared{} block for that.

Having overlapping cluster{} items will cause the command to be executed
twice on the target servers. This is particularly undesirable for ban
removals.

The letters in parentheses denote the flags in /stats U.

cluster {} variables

	name

	The server name to share with, this may contain wildcards and may be
stacked.

	flags

	The list of what to share, all the name lines above this (up to
another flags entry) will receive these flags. They are listed
below.

cluster {} flags

	kline (K)

	Permanent K:lines

	tkline (k)

	Temporary K:lines

	unkline (U)

	K:line removals

	xline (X)

	Permanent X:lines

	txline (x)

	Temporary X:lines

	unxline (Y)

	X:line removals

	resv (Q)

	Permanently reserved nicks/channels

	tresv (q)

	Temporarily reserved nicks/channels

	unresv (R)

	RESV removals

	locops (L)

	LOCOPS messages (sharing this with * makes LOCOPS rather similar to
OPERWALL which is not useful)

	all

	All of the above

shared {} block

shared {
 oper = "user@host", "server";
 flags = list;
};

The shared block specifies opers allowed to perform certain actions on
our server remotely. These are ordered top down. The first one matching
will determine the oper’s access. If access is denied, the command will
be silently ignored.

The letters in parentheses denote the flags in /stats U.

shared {} variables

	oper

	The user@host the oper must have, and the server they must be on.
This may contain wildcards.

	flags

	The list of what to allow, all the oper lines above this (up to
another flags entry) will receive these flags. They are listed
below.

Note

While they have the same names, the flags have subtly
different meanings from those in the cluster{} block.

shared {} flags

	kline (K)

	Permanent and temporary K:lines

	tkline (k)

	Temporary K:lines

	unkline (U)

	K:line removals

	xline (X)

	Permanent and temporary X:lines

	txline (x)

	Temporary X:lines

	unxline (Y)

	X:line removals

	resv (Q)

	Permanently and temporarily reserved nicks/channels

	tresv (q)

	Temporarily reserved nicks/channels

	unresv (R)

	RESV removals

	all

	All of the above; this does not include locops, rehash, dline,
tdline or undline.

	locops (L)

	LOCOPS messages (accepting this from * makes LOCOPS rather similar
to OPERWALL which is not useful); unlike the other flags, this can
only be accepted from *@* although it can be restricted based on
source server.

	rehash (H)

	REHASH commands; all options can be used

	dline (D)

	Permanent and temporary D:lines

	tdline (d)

	Temporary D:lines

	undline (E)

	D:line removals

	none

	Allow nothing to be done

service {} block

service {
 name = "text";
};

The service block specifies privileged servers (services). These servers
have extra privileges such as setting login names on users and
introducing clients with umode +S (unkickable, hide channels, etc). This
does not allow them to set bans, you need a separate shared{} block for
that.

Do not place normal servers here.

Multiple names may be specified but there may be only one service{}
block.

service {} variables

	name

	The server name to grant special privileges. This may not contain
wildcards.

Hostname resolution (DNS)

Charybdis uses solely DNS for all hostname/address lookups (no
/etc/hosts or anything else). The DNS servers are taken from
/etc/resolv.conf. If this file does not exist or no valid IP
addresses are listed in it, the local host (127.0.0.1) is used. (Note
that the latter part did not work in older versions of Charybdis.)

IPv4 as well as IPv6 DNS servers are supported, but it is not possible
to use both IPv4 and IPv6 in /etc/resolv.conf.

For both security and performance reasons, it is recommended that a
caching nameserver such as BIND be run on the same machine as Charybdis
and that /etc/resolv.conf only list 127.0.0.1.

Index

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Operators guide for the charybdis IRC server

 		Scope of this document

 		User modes

 		+a, server administrator

 		+D, deaf

 		+g, Caller ID

 		+i, invisible

 		+l, receive locops

 		+o, operator

 		+Q, disable forwarding

 		+R, reject messages from unauthenticated users

 		+s, receive server notices

 		+S, network service

 		+w, receive wallops

 		+z, receive operwall

 		+Z, SSL user

 		Snomask usage

 		Meanings of server notice masks

 		+b, bot warnings

 		+c, client connections

 		+C, extended client connection notices

 		+d, debug

 		+f, full warning

 		+F, far client connection notices

 		+k, server kill notices

 		+n, nick change notices

 		+r, notices on name rejections

 		+s, generic server notices

 		+u, unauthorized connections

 		+W, whois notifications

 		+x, extra routing notices

 		+y, spy

 		+Z, operspy notices

 		Channel modes

 		+b, channel ban

 		+c, colour filter

 		+e, ban exemption

 		+f, channel forwarding

 		+F, allow anybody to forward to this

 		+g, allow anybody to invite

 		+i, invite only

 		+I, invite exception (invex)

 		+j, join throttling

 		+k, key (channel password)

 		+l, channel member limit

 		+L, large ban list

 		+m, moderated

 		+n, no external messages

 		+o, channel operator

 		+p, paranoid channel

 		+P, permanent channel

 		+q, quiet

 		+Q, block forwarded users

 		+r, block unidentified

 		+s, secret channel

 		+t, topic limit

 		+v, voice

 		+z, reduced moderation

 		User Commands

 		ACCEPT

 		CNOTICE

 		CPRIVMSG

 		FINDFORWARDS

 		HELP

 		IDENTIFY

 		KNOCK

 		MONITOR

 		Operator Commands

 		Network management commands

 		CONNECT

 		SQUIT

 		REHASH

 		RESTART

 		DIE

 		SET

 		User management commands

 		KILL

 		CLOSE

 		KLINE

 		UNKLINE

 		XLINE

 		UNXLINE

 		RESV

 		UNRESV

 		DLINE

 		UNDLINE

 		TESTGECOS

 		TESTLINE

 		TESTMASK

 		LUSERS

 		TRACE

 		ETRACE

 		PRIVS

 		MASKTRACE

 		CHANTRACE

 		SCAN

 		CHGHOST

 		Miscellaneous commands

 		ADMIN

 		INFO

 		TIME

 		VERSION

 		STATS

 		WALLOPS

 		OPERWALL

 		Oper privileges

 		oper:admin, server administrator

 		oper:die, die and restart

 		oper:global_kill, global kill

 		oper:hidden, hide from /stats p

 		oper:hidden_admin, hidden administrator

 		oper:kline, kline and dline

 		oper:local_kill, kill local users

 		oper:mass_notice, global notices and wallops

 		oper:operwall, send/receive operwall

 		oper:rehash, rehash

 		oper:remoteban, set remote bans

 		oper:resv, channel control

 		oper:routing, remote routing

 		oper:spy, use operspy

 		oper:unkline, unkline and undline

 		oper:xline, xline and unxline

 		snomask:nick_changes, see nick changes

 		Server config file format

 		General format

 		Specific blocks and directives

 		loadmodule directive

 		serverinfo {} block

 		admin {} block

 		class {} block

 		auth {} block

 		auth {} variables

 		auth {} flags

 		exempt {} block

 		privset {} block

 		operator {} block

 		connect {} block

 		listen {} block

 		modules {} block

 		general {} block

 		channel {} block

 		serverhide {} block

 		blacklist {} block

 		alias {} block

 		cluster {} block

 		shared {} block

 		service {} block

 		Hostname resolution (DNS)

_static/comment.png

_static/down.png

